Multiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model.

نویسندگان

  • Emmanouil Benetos
  • Simon Dixon
چکیده

A method for automatic transcription of polyphonic music is proposed in this work that models the temporal evolution of musical tones. The model extends the shift-invariant probabilistic latent component analysis method by supporting the use of spectral templates that correspond to sound states such as attack, sustain, and decay. The order of these templates is controlled using hidden Markov model-based temporal constraints. In addition, the model can exploit multiple templates per pitch and instrument source. The shift-invariant aspect of the model makes it suitable for music signals that exhibit frequency modulations or tuning changes. Pitch-wise hidden Markov models are also utilized in a postprocessing step for note tracking. For training, sound state templates were extracted for various orchestral instruments using isolated note samples. The proposed transcription system was tested on multiple-instrument recordings from various datasets. Experimental results show that the proposed model is superior to a non-temporally constrained model and also outperforms various state-of-the-art transcription systems for the same experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Shift-Invariant Model for Polyphonic Music Transcription

In this paper, we propose an efficient model for automatic transcription of polyphonic music. The model extends the shift-invariant probabilistic latent component analysis method and uses pre-extracted and pre-shifted note templates from multiple instruments. Thus, the proposed system can efficiently transcribe polyphonic music, while taking into account tuning deviations and frequency modulati...

متن کامل

City Research Online IMPROVING INSTRUMENT RECOGNITION IN POLYPHONIC MUSIC THROUGH SYSTEM INTEGRATION

A method is proposed for instrument recognition in polyphonic music which combines two independent detector systems. A polyphonic musical instrument recognition system using a missing feature approach and an automatic music transcription system based on shift invariant probabilistic latent component analysis that includes instrument assignment. We propose a method to integrate the two systems b...

متن کامل

An Efficient Temporally-Constrained Probabilistic Model for Multiple-Instrument Music Transcription

In this paper, an efficient, general-purpose model for multiple instrument polyphonic music transcription is proposed. The model is based on probabilistic latent component analysis and supports the use of sound state spectral templates, which represent the temporal evolution of each note (e.g. attack, sustain, decay). As input, a variable-Q transform (VQT) time-frequency representation is used....

متن کامل

Temporally-Constrained Convolutive Probabilistic Latent Component Analysis for Multi-pitch Detection

In this paper, a method for multi-pitch detection which exploits the temporal evolution of musical sounds is presented. The proposed method extends the shift-invariant probabilistic latent component analysis algorithm by introducing temporal constraints using multiple Hidden Markov Models, while supporting multiple-instrument spectral templates. Thus, this model can support the representation o...

متن کامل

A Shift-Invariant Latent Variable Model for Automatic Music Transcription

In this work, a probabilistic model for multiple-instrument automatic music transcription is proposed. The model extends the shift-invariant probabilistic latent component analysis method, which is used for spectrogram factorization. Proposed extensions support the use of multiple spectral templates per pitch and per instrument source, as well as a time-varying pitch contribution for each sourc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 133 3  شماره 

صفحات  -

تاریخ انتشار 2013